Fractal statistics, fractal index and fractons

نویسنده

  • WELLINGTON DA CRUZ
چکیده

The concept of fractal index is introduced in connection with the idea of universal class h of particles or quasiparticles termed fractons which obey fractal statistics. We show the relation between fractons and conformal field theory(CFT)-quasiparticles taking into account the central charge c[ν] and the particle-hole duality ν ←→ 1 ν , for integer-value ν of the statistical parameter. The Hausdorff dimension h which labeled the universal classes of particles and the conformal anomaly are therefore related. We also establish a contact between Rogers dilogarithm function, Farey series of rational numbers and the Hausdorff dimension. PACS numbers: 05.30.-d; 05.30.Ch; 05.70.Ce; 75.40.-s

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractons and Luttinger liquids

We consider the concept of fractons as particles or quasiparticles which obey a specific fractal statistics in connection with a one-dimensional Luttinger liquid theory. We obtain a dual statistics parameter ν̃ = ν+1 which is identified with the controlling parameter e−2φ of the Luttinger model. In this way, a bosonic system characterized by a fractal index if [h] = if [2] = 1 is considered as a...

متن کامل

O ct 2 00 3 Entanglement measure for the universal classes of fractons

We introduce the notion of entanglement measure for the universal classes of fractons as an entanglement between ocuppation-numbers of fractons in the lowest Landau levels and the rest of the many-body system of particles. This definition came as an entropy of the probability distribution à la Shannon. Fractons are charge-flux systems classified in universal classes of particles or quasiparticl...

متن کامل

ua nt - p h / 03 10 06 4 v 3 1 4 O ct 2 00 3 Entanglement measure for the universal classes of fractons

We introduce the notion of entanglement measure for the universal classes of fractons as an entanglement between ocuppation-numbers of fractons in the lowest Landau levels and the rest of the many-body system of particles. This definition came as an entropy of the probability distribution à la Shannon. Fractons are charge-flux systems classified in universal classes of particles or quasiparticl...

متن کامل

A quantum-geometrical description of fracton statistics

We consider the fractal characteristic of the quantum mechanical paths and we obtain for any universal class of fractons labeled by the Hausdorff dimension defined within the interval 1 < h < 2, a fractal distribution function associated with a fractal von Newmann entropy. Fractons are charge-flux systems defined in two-dimensional multiply connected space and they carry rational or irrational ...

متن کامل

Fractons and fractal-deformed Heisenberg algebras

We consider the concept of fractons, i.e. particles or quasiparticles which obey specific fractal statistics and for each universal class h of particles we obtain a fractal-deformed Heisenberg algebra. This one takes into account the braid group structure of these objects which live in two-dimensional multiply connected space. PACS numbers: 05.30.-d; 02.20.-a; 11.25.Hf

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000